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Abstract 

Capacity mechanisms are now deemed a regulatory mainstay in liberalised power system 

decarbonisation. These instruments aim to ensure sufficient resource adequacy with a mix 

able to meet the reliability target set by the re. Remuneration in capacity mechanisms 

depends on so-called firm supply (calculated from de-rating factors or capacity credits), 

taken as a proxy for each resource’s expected long-term contribution to system adequacy. 

Most adequacy assessment and de-rating methods used to calculate security of supply were 

developed for power systems very different from today’s and tomorrow’s, in which 

renewables account for a higher share of the mix and demand is more elastic. Regulators the 

world over are already revising these methods, although that seldom involves an overall 

rethink of their general approach. Drawing from theoretical considerations and 

international best practice, this article defines an updated theoretical framework for the 

resource adequacy problem against the backdrop of the challenges ahead for the power 

sector. The conclusions include recommendations for resilient reliability metrics and de-

rating calculation methods. 

Keywords 

Reliability; adequacy; capacity mechanisms; firm supply; firm capacity; firm energy; de-

rating; security of supply; extreme weather events; flexibility. 

1 INTRODUCTION 

Capacity remuneration or resource adequacy mechanisms are introduced to reinforce the 

energy market and attract the power system investments needed to guarantee long-term 
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security of supply (Neuhoff and De Vries, 2004; Joskow, 2008; Cramton et al., 2013; Petitet 

et al., 2017). The ultimate objective is to maximise social welfare (Ozbafli and Jenkins, 2016; 

Bublitz et al., 2019). Such instruments have become increasingly prominent on the 

regulatory agenda in the last two decades (Batlle et al., 2015) and are now used in most 

liberalised power sectors. The impetus has been fuelled, among others, by the growing 

presence of intermittent renewables in the resource mix. That has intensified the two market 

failures normally cited in economic theory to justify the introduction of capacity 

mechanisms, namely the missing money and the missing markets problems (Newbery, 

2016). 

Capacity mechanisms should be designed around two essential and interdependent 

elements: i) The first is long-term adequacy assessment able to identify the security-of-

supply problem such mechanisms are intended to solve; it is commonly based on the 

reliability metric (such as loss of load probability) regulators also use to define a target. ii) 

The second is a de-rating method able to quantify each resource’s expected long-term 

contribution to system adequacy. That parameter, usually denominated firm supply1, is a 

key element for investors, as it represents the amount of reliability product they can trade 

and be remunerated for under the capacity mechanism. Resources are de-rated in the 

realisation that they are not necessarily available at full installed capacity in situations of 

scarcity. A power plant with an installed capacity of 100 MW and a 30 % de-rating factor is 

qualified to trade a firm supply of only 30 MW in the capacity mechanism2. 

Most adequacy assessments and de-rating methods used to calculate firm supply were 

developed for power systems with resource mixes very different and much simpler, stabler 

and more predictable than the ones presently in place or expected to come on stream in the 

future. In conventional power systems with a prevalence of dispatchable thermal power 

plants, for instance, resource adequacy could be assessed with very simple metrics such as 

the reserve margin, since scarcity was expected to be attributable solely to insufficient 

capacity to cover peak demand. In such systems the availability of different resources was 

 

1 The generic term ‘firm supply’ is used in this article to include both firm capacity, a concept applicable to 

power systems with a predominance of thermal power plants (such as Ireland, ISO New England, PJM), and 

firm energy, a notion used in hydro-dominated systems (such as Brazil, Colombia, Norway, Canada). 

2 Although several references define de-rating factor otherwise, here it is expressed as per cent: the higher the 

de-rating factor, the higher the firm supply acknowledged the resource. 
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only marginally interdependent. The contribution of each resource to system adequacy 

could therefore be analysed separately based on historical data, since the resource mix was 

not expected to change drastically at any future time. 

In a context of energy transition, however, power systems are undergoing speedy change. 

More technological alternatives are now being implemented, making predictions about the 

future mix considerably more complex. The presence of renewable technologies whose 

performance depends on the energy source that drives them has varied the type and 

magnitude of scarcity affecting power systems and raised the correlation between resource 

availability and peak load timing. That precludes estimating each resource’s contribution to 

adequacy separately, for contributions depend on overall system performance. 

Electricity demand is also becoming more elastic, in turn modifying the concept of adequacy 

itself, since scarcity can only be defined where price is taken into consideration as well. The 

complexity of resource adequacy issues has been further intensified by climate change with 

its corollary, the appearance of extreme weather events and the concomitant re-composition 

of scarcity conditions. Some of these new patterns have been addressed in the literature 

(Bothwell and Hobbs, 2017; Mastropietro et al. 2019; Söder et al., 2020; Lambin, 2020; 

EPRI, 2021). 

An urgent need has been identified to reform adequacy assessments and the de-rating 

methods now in place to embrace all the new technologies and dynamics ushered in by 

energy transition. Whilst a number of regulators are presently rising to the challenge, the 

measures taken are frequently designed to solve specific issues (such as the need for a de-

rating method for renewables or storage, which may differ from the procedure used for all 

other resources) and seldom involve a general methodological overhaul. 

This article aims to define an updated theoretical framework for the resource adequacy 

problem and propose a comprehensive approach to rise to address the new challenges. The 

proposal thoroughly addresses the elements of the problem ranging from the reliability 

metric used in the adequacy assessment to the calculation of firm supply. The study drew 

from recent international experience on the subject at hand. The document is structured as 

follows: 

• Section 2 reviews the reliability metrics underlying both adequacy assessments and de-

rating. Particular importance is attached to the need to properly factor the price 

dimension into the reliability metric and make allowance for extreme events. 
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• Section 3 classifies the methodologies for calculating firm supply based on six design 

elements and discusses several alternatives, including resources’/technologies’ marginal 

vs. mean contributions and historical vs. forward-looking approaches. The authors 

propose recommendations for each element of the procedure described, supporting their 

arguments with theoretical considerations and recent international experience. 

• The recommendations are pooled and summarised in section 4, where conclusions are 

drawn and policy implications defined. 

2 RELIABILITY METRICS 

The present review of the long-term reliability metrics most widely used in the power 

sector, especially for capacity and adequacy mechanisms, is followed by an analysis of the 

general theoretical background on reliability metrics. Two major design dimensions (the 

type of contingency and the statistical measure used in its study) are identified and the 

advantages and disadvantages to the procedural alternatives in each are discussed. 

2.1 Most widely used long-term reliability metrics 

The reliability metrics most widely used to assess power system long-term resource 

adequacy are reserve margin, loss of load probability, loss of load expectation, expected 

unserved energy and the 95th percentile loss of load duration (IAEA, 1984; Billinton and 

Allan, 1994; EC, 2016a; NERC, 2018; ACER, 2020). 

• Reserve margin (RM) measures the difference between a system’s installed capacity and 

its peak demand. Potential insufficient availability has traditionally been accounted for 

by de-rating units’ installed capacity further to simple methods (e.g., by multiplying that 

value by an equivalent forced outage rate). The reserve margin target has commonly 

been expressed in terms of capacity or as a percentage of the load, dividing the difference 

between de-rated installed capacity and peak demand by peak demand. Alternatively, 

targets defined in terms of this reliability metric have also been based on the N-1 

criterion, i.e., the capacity reserve margin should be larger than the installed capacity of 

the largest power plant in the system. Reserve margin is presently the metric used in 

Spain, Poland and Sweden, as well as in many other systems (EC, 2016b). 

• Loss of load probability (LOLP)/loss of load expectation (LOLE) estimate the likelihood 

of system inability to cover the full load demanded at any given time (rather than peak 

time only). The two metrics are actually equivalent, differing only in the way reliability 
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is expressed: as probability (in per cent) in LOLP and as the cumulative duration (in 

hours/year) of scarcity events during which demand cannot be met in LOLE. Both are 

widely used in the United States and Europe (NERC, 2018; ENTSOe, 2020). 

• Expected energy not served (EENS) quantifies the expected amount of energy that the 

system will not be able to supply in a certain time horizon. Unlike LOLP and LOLE, 

which focus on the mere frequency and/or duration of scarcity events, EENS attempts 

to measure the depth or magnitude of load loss in terms of energy as an indication of 

severity. Its expression can also be normalised, for example by dividing that cumulative 

value by the total amount of energy demanded by the system in the given time horizon. 

EENS is used in Alberta (NERC, 2018) and Australia (AEMO, 2019). 

• The 95th percentile of loss of load duration (LOLE95 or LOLD95) is found by applying 

that statistic to the probability distribution function for loss of load duration (ENTSOe, 

2019). It envisages extreme scenarios (although it rules out the uppermost 5 % of the 

distribution function) and is always larger than LOLE. It is used in Belgium (Elia, 2016). 

• Energy supply in the least favourable hydrological scenario is typically used in energy-

constrained, such as hydro-dominated, power systems (Rodilla et al., 2015), where the 

annual electricity demand must be covered in all potential hydrological scenarios, 

defined on the grounds of historical inflow records. It is used in Colombia. 

Two main design elements inform all these metrics: i) the underlying contingency measured 

(either the number of scarcity events or the energy that could not be served during these 

events); and ii) the methodology used to estimate this contingency (either deterministic or 

probabilistic) and the statistical measure used to characterise it. These elements are analysed 

hereunder. 

2.1.1 Type of contingency measured 

Events vs. unserved energy 

As noted earlier, LOLP and LOLE pool events where demand went unmet in a given period 

of time without distinguishing degree of severity, i.e., the amount of unserved energy in each 

event. In other words, with LOLP and LOLE an event where 1 MW of demand went unmet 

would be accorded the same weight as one where the deficit was 1 GW. That shortcoming 

may prevent these metrics from capturing a resource’s actual contribution to system 

adequacy. 
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Assuming a 1-hour, 100-MW loss of load, for instance, inasmuch as a 99-MW power plant 

would not cover the shortfall, its contribution would not be captured by loss-of-load metrics. 

In contrast, a 100-MW power plant would offset the deficit entirely, lowering LOLP or 

LOLE, despite the nearly identical contribution of the two plants to the system. As discrete 

metrics, then, LOLP and LOLE are able to measure full compensation for a shortage only, 

a characteristic that could intensify adequacy assessment volatility. 

EENS on the contrary measures the severity of each scarcity event and as such constitutes 

a continuous metric. Applied to the foregoing example, it would show the two plants to 

cover very similar amounts of the unserved energy, providing a more accurate measure of 

the overall contribution to system adequacy. 

Resilient metrics for power sectors with elastic demand 

Nonetheless, power system evolution and increasingly energy price-sensitive demand will 

render loss of load and unserved energy less meaningful. That is illustrated in the simple 

graphic example in Figure 1. When demand is totally inelastic (left), a scarcity event can be 

identified and unmet demand measured intuitively3. Conversely, at the other extreme where 

demand is wholly elastic, unserved energy cannot be defined so readily, for at least part of 

the demand that goes unsupplied attributes a lower value to electricity than the market 

clearing price. Such demand should not be deemed unmet, but rather simply not 

participating in a trade not found to be beneficial by its utility function. 

 
Figure 1: Unserved energy with inelastic (left) and elastic (right) demand 

 

3 The value of lost load (VOLL) may not be constant, however, and is likely to depend on the agents involved 

and the duration and frequency of scarcity events (EPRI, 2021).  
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Be it said, however, that even where demand is totally elastic in the short term, scenarios 

with extremely high prices might prevail over long periods of time, perhaps denoting a 

resource mix that deviates significantly from the ideal that would maximise social welfare. 

Regulators may wish to lower the probability of such events to move toward a resource mix 

better suited to maximising welfare by implementing a capacity mechanism. 

As demand becomes more price-responsive, reliability criteria should take that dimension 

into consideration, providing regulators with a tool able to identify new scarcity situations. 

Whilst demand elasticity is still very constrained, especially among certain communities of 

consumers, capacity mechanisms are long-term regulatory instruments that should be 

designed to be resilient to changes in the power sector of the future. Rising demand elasticity 

is a feature many experts believe will characterise the energy transition (MITEI, 2016; EC, 

2019). 

Even in power systems still characterised by scant demand elasticity, however, the market 

price is an excellent barometer of scarcity able to accommodate all the dimensions of the 

security-of-supply problem and provide a neutral approach to their identification. The 

market price would reveal insufficient generation capacity-related scarcity events 

attributable to highly-correlated thermal fleet outages, such as in the cold snap that affected 

PJM in 2014 (PJM, 2018) or Texas in 2021 (ERCOT, 2021). The market price would also 

identify scarcity situations stemming from a lack of system flexibility, a major concern in 

many systems where renewables are acquiring a growing presence. The quintessential 

example is California’s rolling blackouts in August 2020 (Joskow, 2020; CAISO, 2021). 

Market pricing would likewise reveal the long-term power shortages that affect hydro-

dominated systems in dry years when hydropower reserves decline, as in Colombia in 

2015/2016 (Mastropietro et al., 2020). 

One possible way to factor the price dimension into reliability metrics would be by including 

high-price events in traditional adequacy assessments. That would mean broadening loss-

of-load metrics to take account of hours when the market price exceeds a certain threshold. 

Unserved energy metrics, in turn, would have to envision the energy offering cleared at 

higher than a certain reference price. The difference between traditional reliability and price 

threshold-based metrics is represented graphically in Figure 2. Such a price threshold would 

aspire to determine the actual willingness to pay by the part of the demand not participating 

in the market and consequently undetected. 
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Figure 2: Difference between traditional reliability and price threshold-based metrics 

Factoring in the price dimension is not a new idea in capacity mechanism design, for it is 

among the earliest fundamentals of the reliability options approach (Vázquez et al., 2002; 

Bidwell, 2005; Cramton et al., 2013; Andreis et al., 2020). With such mechanisms (reliability 

options are currently being used in Colombia, Ireland and Italy), however, the market price 

is used only to define the reliability product and the rules activating verification of actual 

performance by a resource party to a reliability contract. It is taken into consideration 

neither in the adequacy assessment nor in firm supply calculations. 

The sole experience anywhere in the world where a power system pondered accommodating 

the price dimension in adequacy assessment was a proposal put forward by Elia (2019a), the 

Belgian system operator, for redesigning the country’s capacity mechanism. Elia realised 

that focusing solely on loss-of-load events was insufficient, for it would not rule out near-

scarcity events that would also be critical to system adequacy. The institution consequently 

contended that firm supply calculations should take account of resource contributions 

during near-scarcity hours, defined as periods with unserved energy plus times when a 

minor rise in demand would translate into unserved energy. Whereas Elia studied the 

possibility of using a price threshold to identify near-scarcity hours, it disregarded that 

pathway on the grounds that administratively setting such a scarcity price would be 

arbitrary (Elia, 2019b). That argument may be countered, however, with the observation 

that defining a demand increment threshold deemed as conducive to unserved energy would 

be equally arbitrary. 

Conventional LOLP, LOLE and EENS
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2.1.2 Statistical measure used to characterise the contingency  

Deterministic vs. probabilistic approaches 

The underlying contingency (number of scarcity events, unserved energy or energy 

supplied above a price threshold) may be measured deterministically, i.e., based on a single 

scenario, or probabilistically, in which a number of scenarios, each with a given probability 

of occurrence, are envisioned. The underlying contingency for each scenario is then 

computed and a probability distribution function is built. In the probabilistic approach a 

statistical measure is then needed to ‘condense’ the function into a single value. 

Both deterministic metrics and probabilistic metrics based on overly simplistic assumptions 

fail to capture the probabilistic nature of the adequacy problem (EC, 2016a). As their 

computational simplicity is offset by their steadily declining accuracy in representing 

modern power system realities, they are used in very few jurisdictions. By the same token, 

the more complex probabilistic approach calls for a fair number of assumptions that may 

sway the outcome. It delivers more precise results, however, for it can capture the significant 

interdependence among the variables studied (such as the occurrence of scarcity events and 

the availability of certain technologies). 

Mean and median vs. consideration of extreme scenarios 

Whereas mean and median values may be representative of the entire probability 

distribution function, they underestimate the weight of the tail of the probability 

distribution function, where the most severe shortages lie. Since the purpose of capacity 

mechanisms is to guarantee security of supply, particularly under the harshest conditions, 

reliability metrics that cover extreme scenarios may provide very valuable information. 

That has been acknowledged by Australian institutions, which have drawn attention to the 

rising likelihood of extreme events due to climate change (AEMO, 2019). This procedure 

may lead to heavier tails in the distribution function of stress events (as shown graphically 

in Figure 3 for Australia) that should be internalised in adequacy assessments4. 

 

4 The importance of encompassing extreme weather events in adequacy assessments is further highlighted by 

the dramatic supply crisis faced by ERCOT in February 2021 (ERCOT, 2021). 
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Figure 3: Distribution of annual unserved energy in New South Wales, 2023-2024 (AEMO, 2019) 

The Colombian power system affords another example of the importance of statistical 

parameters. In that system, hydropower accounts for 70 % of total installed capacity. Every 

few years, however, the El Niño phenomenon brings droughts and high temperatures to the 

region for several months, reducing hydropower reservoir inflows and jeopardising security 

of supply (Mastropietro et al., 2020). The El Niño effect may vary in duration, intensity and 

periodicity, but it always has a long-term impact on the Colombian electricity market price, 

which may remain high for months and is used here as an indicator of scarcity conditions. 

The graph in Figure 4 of the price of electricity in Colombia over the last 25 years illustrates 

its rise during El Niño events5. 

 

5 El Niño periods are formally defined in the Oceanic Niño Index (ONI) (NWS, 2021). 
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Figure 4: Wholesale electricity market prices in Colombia, 1996-2019, inclusive (authors’ formulation based 

on XM data (XM, 2021) and BRC exchange rate information (BRC, 2021)) 

A subset of the Colombian market prices (2009 to 2019) given in Figure 4 was rearranged 

to build the probability distribution function6 graphed in Figure 5 to exemplify the 

limitations of some statistical parameters. Further to the information included on the graph, 

even very high (95th or 99th, PCTL 95/99) percentiles may fail to capture the full weight of 

the tail. 

 

6 Assuming equiprobability for all instances. 
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Figure 5: Distribution function for wholesale electricity market prices in Colombia (authors’ formulation 

based on XM data (XM, 2021) and BRC exchange rate information (BRC, 2021)) 

A statistical parameter that is less widely used in adequacy assessments but that might 

remedy the aforementioned shortcomings is Conditional Value at Risk (CVaR). CvaR 

focuses on extreme scenarios, isolating the tail of the probability distribution function, 

defined as a percentage (α) of the worst cases and calculating its mean value (NERC, 2018). 

As Figure 6 shows, the CVaR of a system’s unserved energy would be the weighted mean 

of that energy in the least favourable scenarios (the upper 5 % of the probability distribution 

function, for instance, with α=5 %). 

 
Figure 6: Graphical representation of the CVaR applied to unserved energy 
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2.2 Best practice 

2.2.1 Type of contingency measured: introducing the price dimension in the metric 

Further to the critical analysis discussed above, the authors believe the optimal reliability 

metric for managing the new present and future electricity resource mix is the energy 

cleared and supplied above a price threshold (a definition that includes both unserved energy 

and energy offered and cleared over that price). As this reliability metric, like EENS, is 

continuous, it enhances the consistency and stability of the results of any assessment 

conducted with it7. Unlike EENS, however, it is resilient to higher demand elasticity, since 

it identifies scarcity conditions on the grounds of market price, the most accurate barometer 

of such conditions (see subsection 2.1.1). 

The literature on reliability options and the international experiences of countries where 

this kind of capacity mechanism is in place can be used as a reference to define the price 

threshold. According to Vázquez et al. (2002), the strike price of reliability option contracts 

should be high enough to elude interference with market operation under normal 

circumstances. That is applicable to any price threshold used in the reliability metric, which 

should identify only those situations where security of supply is at risk but not where prices 

rise for other reasons (such as a spike in fuel prices). 

The threshold for the strike price of reliability options may be defined from the variable cost 

of peaking units. In Italy for instance, the strike price is set as the variable cost (€/MWh) of 

the reference peak technology, in turn defined as the dispatchable technology that would be 

included in the optimal generation mix delivering the lowest unit investment cost (€/MW). 

Whereas the reference technology does not change, the strike price is subject to indexation 

and varies weekly. The Italian indexation formula includes fuel costs (the most prominent 

item), energy imbalance costs, CO2 costs and green-certificate costs, among others (Terna, 

2018a). In the current context of ever greater fuel and CO2 price long-term volatility, 

threshold indexation would be an essential feature of the reliability metric. 

 

7 To return to the example in item 2.1.1, the 99-MW and the 100-MW power plants would be assigned very 

similar de-rating factors and no discontinuity would be observed between them. 
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2.2.2 The statistical parameter: shifting the focus to extreme events 

The metric proposed should be studied with a model designed to process the variables at 

issue sequentially to simulate power system operation in the time horizon under study. In 

such a probabilistic model the reliability metric must depend on a statistical parameter that 

pools the results for all the scenarios envisioned. As contended earlier, the statistical 

parameter best suited to today’s and tomorrow’s power systems is CVaR, which identifies 

the mean value of the tail in the probability distribution function for energy supplied above 

the price threshold. In that approach attention can be focused on extreme scarcity events, 

the ones capacity mechanisms are designed to mitigate and the ones whose frequency and 

intensity may be heightened by climate change. 

3 METHODOLOGIES TO CALCULATE FIRM SUPPLY 

By way of follow-up on the alternative ways to determine reliability metrics discussed above, 

this section addresses theoretical considerations around methods for calculating firm supply 

(also termed de-rating methods) as an element in capacity mechanism operation. Firm 

supply, the product traded in capacity mechanisms, is designed to acknowledge and 

incentivise resource contributions to system adequacy, defined as their ability to produce (or 

fail to consume) in periods when the system is strained. 

The design alternatives addressed in this analysis are as follows. 

• Firm supply may be calculated taking each resource or technology separately or in 

conjunction with the rest of the mix on the grounds of the expected dispatch of the entire 

system, which internalises potential inter-technology synergies. 

• The reliability metric used to calculate each resource’s contribution must be chosen from 

among those available. 

• Firm supply may be based either on mean or marginal contributions. 

• Firm supply calculations may be based on historical or projected data. 

• Firm supply may be calculated for each resource individually or pooling the data for all 

the resources sharing a given technology. 

• As either one or several products may be considered in the capacity mechanism, the 

impact of the latter option, which would call for calculating several firm supply values, 

must be determined. 
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As in the preceding section, a list of best practices is provided for each of the items discussed, 

further to which an ideal methodology for calculating firm supply is proposed in the 

conclusions. 

Before proceeding to conduct the analysis, however, one initial recommendation is in order: 

the methodology for calculating firm supply should be the same for all the resources 

potentially participating in the capacity mechanism. Any other approach would segregate 

resources, for which no theoretical justification can be alleged. Although defining specific 

methodologies for new technologies (as many regulators did and some still do for variable 

renewable energies) may be a quick and easy way to open the capacity market to these 

resources without revising adequacy assessment as a whole, the outcome is suboptimal and 

may distort competition among rival technologies. 

3.1 Measuring resource contribution separately or as part of the system as a whole 

The contribution of a resource to system adequacy depends on its output in scarcity events. 

As such events result from the balance between demand and power availability, electricity 

system adequacy depends on the combined performance of all its component resources. 

Shortages may differ in duration, lasting but a few hours in capacity-constrained systems 

but much longer (weeks, months or years) in energy-constrained systems. 

In some jurisdictions, however, firm supply for certain technologies is calculated on the 

grounds of the performance of each resource or technology separately (Mastropietro et al., 

2019), irrespective of the conditions prevailing in the system. For instance, a wind power 

plant’s firm supply may be defined as a certain percentile of its capacity injections8. Similar 

reasoning is deployed when a thermal power plant is de-rated based only on its equivalent 

forced outage rate, ignoring any possible correlation among such outages and/or between 

outages and the appearance of shortfalls. Examples of that correlation include the cold snap 

that affected the eastern United States in 2014 (Mastropietro et al., 2017) and the more 

recent extreme weather event in Texas in 2021 (EPRI, 2021). 

 

8 That is not the same, however, as using a certain resource’s capacity injection, or a percentile of it, during 

scarcity conditions (defined, for instance, as events with unserved energy or very high prices). In such cases, 

the correlation between resource output and system dispatch is associated with the definition of the scarcity 

conditions. 
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Best practice 

Theoretically speaking, any methodology that calculates a resource or technology’s firm 

supply based solely on its performance should be avoided. Such readily implemented 

approaches may be used when a certain technology is first introduced but as they are 

extremely imprecise they induce significant error and inefficiency. Resilient methodologies 

should define each resource’s firm supply deemed as a component of system dispatch as a 

whole. 

3.2 Reliability metric for assessing contributions 

Theoretically, capacity mechanisms are introduced when adequacy assessment shows the 

regulator’s reliability target to be at risk. Resources are presumably remunerated for 

contributing to reaching that target. Each resource’s firm supply should consequently be 

defined as its contribution to the reliability target set by the regulator and calculated based 

on the metric used in the assessment. 

Although such reasoning may sound obvious, it is surprisingly often absent from standard 

practice. In most power systems relying on capacity mechanisms, including for instance the 

United Kingdom (National Grid, 2019a), Belgium (Elia, 2019a and Elia, 2019b) and many 

of the systems in place in the United States (NYISO, 2019; PJM, 2019), firm supply of some 

or all technologies is calculated using a different metric than used to define the reliability 

target. By way of example, adequacy is assessed in the UK using LOLE, while de-rating 

factors for renewable resources are calculated on the grounds of their contribution to 

lowering EENS. Belgium also conducts adequacy assessments based on LOLE, whereas the 

operator proposed calculating renewable de-rating factors further to expected output during 

the near-scarcity hours, as discussed in item 2.1.1. 

That approach is clearly suboptimal, inasmuch as it entails remunerating resources for a 

service that while related to is not exactly the one needed to meet the target defined. 

Theoretical justification for this assertion can be found in the mathematical formulation of 

the optimisation problems given in Annex I, where welfare maximisation in a centralised 

context, constrained by a system reliability target, is compared to the marketplace, which 

generates price signals for both energy and firm supply (Pérez-Arriaga, 1994; Schweppe et 

al., 1988). 
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Best practice 

Adequacy should be addressed holistically. In other words, the same metric should be used 

both to define the reliability target in the adequacy assessment and to calculate each resource 

or technology’s firm supply. 

3.3 Marginal (or incremental) vs. mean historical contributions 

The design element bearing what is likely to be the heaviest impact on de-rating factor 

calculations is the decision to use marginal or mean contribution values. In the former the 

analysis focuses on the impact on system adequacy of minor (typically a few MW) 

increments in resource or technology capacity, whereas in the latter it is the mean 

contribution of resource or technology capacity as a whole9. 

The difference between mean and marginal contributions is particularly relevant to 

technologies whose presence is liable to progressively change the scarcity conditions facing 

the system. One example is solar PV-based resources, which help reduce the likelihood of 

shortfalls during the daylight hours but are unable to generate power late in the evening. 

The curve graphed in Figure 7 compares the contribution between solar generation and that 

of all other technologies. Whereas absolute demand peaks early in the evening, net peak 

demand (total demand minus solar production) is recorded in the late evening. Solar power 

consequently shifts and lowers net peak demand, thereby impacting the likelihood of 

scarcity events during the day. 

 

9 The decision on whether to calculate a homogeneous firm supply for the entire technology (e.g., through a 

common de-rating factor) or an individual firm supply for each resource is another design element, which is 

discussed in section 3.5. 
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Figure 7: Total and net demand for a system with substantial solar PV output (authors’ formulation based on 

California ISO data (CAISO, 2019) for 16 July 2019, including incremental solar power) 

Figure 7 includes the hypothetical production of an additional 500 MW of solar capacity 

(light yellow) to depict the effect of a marginal increment in solar PV installed capacity10. 

Simplifying the matter by assuming the system under study to be purely thermal with no 

energy storage, the contribution of the additional capacity to system adequacy is minimal. 

In other words, as its production at net peak demand is practically nil, its contribution to 

marginally calculated firm supply would be close to naught. As a result, new solar resources 

installed under such circumstances should not be remunerated by the capacity mechanism. 

Conversely, where solar technology is taken as a whole, it contributes to raising system 

adequacy for it lowers net peak demand. Calculations based on the mean contribution would 

accord solar resources positive firm supply, although its value would decline with each new 

solar plant installed. (The total contribution, which rises almost negligibly, would be shared 

by a larger number of resources). Acknowledging the mean contribution for the technology 

as a whole to the new resources would credit them for greater firm supply than merited by 

their actual contribution. 

The downturn in solar PV marginal firm supply with greater system presence is depicted 

in Figure 8, which plots PV solar power ELCC against installed capacity in California ISO. 

 

10 Computationally speaking, the marginal increment should be lower than 500 MW, a value selected here 

only to make the new area visible in the chart. 
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Figure 8: Variation in solar PV marginal ELCC vs installed capacity (Energy & Environmental Economics, 

2019) 

The contribution graphed in the figure is expressed as marginal ELCC (Effective Load 

Carrying Capability), a probabilistic method that estimates the additional demand that 

would be met by raising the installed capacity of the resource at issue with no detriment to 

reliability. An alternative approach would be to lower resource installed capacity and 

analyse the amount of ‘perfect’ generation (with a de-rating factor of 100 %) that would need 

to be installed to ensure the reliability target established. The baseline generation mix used 

in ELCC calculations is as required to guarantee the regulator’s reliability target (Garver, 

1966). Although ELCC is widely used in capacity mechanisms, it must be understood as a 

generic computational method that can be implemented in a number of ways. Its practical 

implementation may benefit from the recommendations made hereunder (such as basing the 

parameter on a continuous and resilient metric). 

This discussion has focused up to now on the role of the resource mix in determining each 

resource or technology’s firm supply. Firm supply obviously depends as well, however, on 

the technical characteristics of the resource studied (such as ramping capability or energy 

constraints). That notion is particularly relevant to storage technologies. For their capacity 

markets, both Ireland (I-SEM, 2018) and the United Kingdom (National Grid, 2017) 

attribute variable de-rating values to resources grouped under different ‘storage classes’ 

defined in terms of storage duration. Further to the data in Table i the de-rating factor is 

lowest for the shortest durations, inasmuch as that characteristic limits such resources’ 

contribution during scarcity events. 
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Table i. Capacity market de-rating factors proposed for duration-limited storage classes in the 2018/19 T-1 

and the 2021/22 T-4 auctions in the UK (National Grid, 2017) 

De-rating per storage duration 2018/19 2021/22 

0.5 hours 21.3% 17.9% 
1.0 hour 40.4% 36.4% 
1.5 hours 55.9% 52.3% 
2.0 hours 68.1% 64.8% 
2.5 hours 77.3% 75.5% 
3.0 hours 82.6% 82.0% 
3.5 hours 85.7% 85.7% 
4.0+ hours 96.1% 96.1% 

Best practice 

With the marginal approach, the contribution to system adequacy is estimated more 

accurately and the economic signal emitted by the capacity mechanism is more efficient 

(Bothwell and Hobbs, 2017). The advantages of using marginal contribution have been 

acknowledged and implemented by some regulators, such as in Ireland (SEMC, 2018) and 

the United Kingdom (National Grid, 2017). 

Marginal contribution optimality is also inferred by the mathematical formulation set out 

in Annex I. The resulting optimality shows that the per-unit remuneration of a give resource 

(MKi) for its participation in the capacity mechanism is the derivative of the reliability metric 

(RM) used in the adequacy assessment relative to the installed capacity of that resource (Ki), 

multiplied by the dual variable of the constraint associated with the reliability target in the 

centralised optimisation problem (β). In a way, the latter parameter represents the 

capacity/adequacy market price: 

M𝐾𝐾𝑖𝑖  = 
∂RF
∂Ki

∙β 

A second-best yet efficient approach 

As noted in item 2.2.1 above, two types of reliability metrics can be defined depending on 

the contingency measured. Where the regulator opts for a continuous metric (such as EENS 

or energy cleared and supplied above a price threshold) a second-best alternative to the 

marginal contribution may be applied, as discussed in this item. 

Marginal contributions to resource adequacy are computed by modelling the resource mix 

and analysing the variation in the reliability metric resulting from a marginal increase in a 
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resource or technology’s installed capacity. Such modelling should simulate the future 

resource mix based on the best forecasts available, as described in greater detail in section 

3.4. 

Taking the reliability metric proposed in subsection 2.2, calculations would be performed as 

outlined in Figure 9. Critical periods are defined as times when energy, including unserved 

energy (red areas in the chart), is cleared and supplied above a price threshold (yellow areas 

in the graphs). A marginal rise in a resource or technology’s installed capacity (green areas 

on the graph) might contribute to a reduction in some of this ‘critical’ energy. That reduction 

would be the firm supply the resource under study is able to add to the system during the 

time horizon defined in the model, calculated from its marginal contribution (best practice 

method). 
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Figure 9: Graph showing the best practice (marginal) and second-best methods for calculating firm supply 

This methodology delivers an accurate estimate of each resource’s contribution to the 

reliability target. It may be subject to computational problems, however (Faria et al., 2009). 

To begin with, the probabilistic nature of the model and the need to repeat the process for 

each resource or technology may involve a very large number of simulations. Secondly, the 

algorithms used to solve these optimisation problems may be unstable, with a minor rise in 

the installed capacity of a certain technology possibly resulting in significantly different 

dispatch arrangements. 
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Such computational problems may be eluded by running a single probabilistic simulation 

with the resources expected to comprise the future generation mix and evaluating each one’s 

production during critical periods as defined above. Such an approach disregards critical 

periods when a resource’s marginal contribution would eliminate the critical energy, as 

shown in Figure 9. The error would be minor, however, provided the marginal increase 

involved is small. 

Given that such a model would be probabilistic, production during critical periods would be 

assessed under more than one scenario. If, as recommended in subsection 2.2, CVaR is used 

as the statistical parameter to calculate the reliability metric, the focus will be on scenarios 

with a higher total critical energy. Under those circumstances a resource’s firm supply 

would be its mean output during critical periods in such scenarios. 

3.4 Historical vs predicted future contributions 

Many power systems that apply adequacy mechanisms calculate resources’ firm supply as 

their historical output in past scarcity situations (RTE, 2014; ISO New England, 2016; 

Terna, 2018b; NYISO, 2019; PJM, 2019). Power systems are evolving rapidly, however, 

with the introduction of new generation and storage technologies and rises in demand 

elasticity. The inference is that historical data might not be representative of future power 

system operation. If firm supply is calculated from historical data, regulators run the risk of 

remunerating resources that may be unable to contribute to countering expected future 

scarcity events11. 

If capacity mechanisms aim to meet future reliability targets, firm supply should be based 

on projections of future power system operation. That entails using a model to simulate 

operation in different scenarios (varying hydro inflows and renewable production, among 

others) and analysing each resource’s contribution to the established target. That idea, 

which is hardly new, lies at the base of methods like the aforementioned ELCC (CPUC, 

2014). 

The results of simulations depend of course on the initial assumptions and the scenarios 

established, although such problems are common to all models and methods. Calculating 

 

11 Some power systems may be characterised by a resource mix and scarcity conditions not be subject to major 

energy transition-mediated alteration. If scarcity conditions follow the same pattern, data on historical output 

during stress events may continue to afford constitute a good approximation for calculating firm supply. 
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firm supply from historical data is tantamount to assuming that scarcity conditions will not 

change in the future, a premise over which energy transition is casting doubts. As noted in 

subsection 3.1, given that a resource’s firm supply depends on system operation as a whole, 

future operation forecasts should be based on the best information available rather than 

assuming that operation will remain constant in the future. 

A number of regulators around the world have acknowledged the benefits of projection-

based firm supply calculations (Moreno et al., 2010). California’s regulator has recently 

changed its approach to firm supply calculations for intermittent renewable resources from 

the use of historical data to the deployment of a simulation model (CPUC, 2017). Other 

power systems that have introduced capacity mechanisms in recent years, including Ireland 

(SEMC, 2018), Belgium (Elia, 2019b) and the United Kingdom (National Grid, 2019b and 

National Grid, 2017), seem to prefer to calculate firm supply on the grounds of projections. 

Best practice 

Based on the foregoing theoretical arguments and the international experiences cited, and 

in keeping with the proposal for the reliability metric, the authors believe that each resource 

or technology’s firm supply should be determined with a simulation model that processes 

the variables of interest sequentially. Input, in turn, should be drawn from the best forecast 

available on future system operation. 

3.5 Pooled calculations of firm supply for all plants using the same technology 

Another issue to be taken into consideration is whether firm supply calculations should be 

performed for each resource separately or pooled for all resources using the same 

technology. Theoretically, the former would be the optimal approach, for the technical 

characteristics (such as position in the grid or availability of the primary energy source) of 

resources sharing a given technology may differ from one plant to another. 

The trouble with this approach is that while theoretically robust, its real-life application 

encounters a major drawback. Assessing the marginal contribution of each resource calls for 

de-rating methodology based on an optimisation model able to simulate each one’s future 

performance. The optimisation software embedded in modelling tools typically computes 

the optimal solution with too wide a tolerance to evaluate the expected marginal 

contribution with any precision (see earlier comment in subsection 3.3). 
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To address such computational issues and the volatility of the respective outcomes, 

regulators tend to define firm supply by pooling all the plants that share a given technology 

and assessing their combined performance. That approach has been adopted by the United 

Kingdom (National Grid, 2019a), Belgium (Elia, 2019b) Ireland (SEMC, 2018) and Italy 

(Mastropietro et al., 2018), among others. Calculating firm supply by technology may yield 

an acceptable approximation if all resources using each could be assumed to contribute 

equivalently or similarly to the reliability target. A case in point would be nuclear power 

plants, which are likely to contribute similarly to the reliability target unless they are subject 

to very different forced outage rates or the constraints on their fuel supply vary significantly. 

Such approximations may be inaccurate for other, particularly non-conventional, 

technologies, however. Wind farms, for instance, not only come in all manner of sizes and 

configurations, but their output depends on the availability of the wind resource, which may 

vary geographically within the power system. Attributing a single firm supply value to the 

entire wind fleet on the grid would not capture those differences, with the risk of giving 

project developers inefficient incentives. The United Kingdom de-rates onshore and offshore 

wind facilities differently for precisely that reason12 (Ofgem, 2021). Ireland, in contrast, 

where offshore wind is not expected to be connected any time in the near future, establishes 

the same de-rating factor for its entire onshore wind capacity (SEMC, 2018), since given the 

size of the island and its prevailing winds output is closely correlated across its entire wind 

fleet. 

Such correlations are not limited to non-conventional technologies. Recent stress events 

such as the extreme weather conditions that hit Texas in February 2021 (ERCOT, 2021) 

may suggest high correlations between the outage rates of individual thermal power units 

such as combined cycle power plants, which should not be handled separately to calculate 

their firm capacity (EPRI, 2021). Similarly, in scorching weather even nuclear power plants 

may go offline simultaneously, as in France and Germany in summer 2019 (Reuters, 2019). 

Conversely, calculating a single de-rating factor for an entire technology may be inefficient 

for hydroelectric power plants. That may be attributed to two factors. On the one hand, as 

no two hydroelectric resources are totally equivalent (in light of the interrelations among 

installed capacity, reservoir size, hydro inflows and similar), they are unlikely to contribute 

 

12 In for the 2019 T-3 auction, for instance, the de-rating factors for onshore and offshore wind were 8.2 % and 

12.3 % respectively (Ofgem, 2021). 
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equally to the reliability target. And on the other, the output of certain plants may be 

interdependent, such as where several hydropower facilities are sited on the same river 

basin. In such cases, attributing the most efficient firm supply value to each resource would 

be a very complex, if not impossible, endeavour. A more robust solution would be to 

calculate a single firm supply value for the entire hydropower capacity on a given river basin 

and subsequently design a method to divide that value among them. 

Best practice 

The authors deem that resources sharing a technology should be grouped when they 

contribute similarly to the reliability target. The model for calculating firm supply would 

deliver a single de-rating factor for the technology, which could then be used to calculate 

each resource’s firm supply. That simplification should not be adopted, however, when 

resources with the same technology contribute very differently to system adequacy. This 

would be true for renewable resources sited in different areas of the system and subject to 

very different primary energy availability conditions. Geography might also affect thermal 

power plants, for example, due to differences in constraints on fuel availability between one 

area of a country and another (CSMEM, 2016; Freeman et al., 2020). 

Similarly, the proposal for hydropower plants is to calculate a single firm supply value for 

all those located along the same river basin. That value could then be divided among the 

plants in keeping with specific rules designed to generate signals that efficiently incentivise 

the agents concerned (see Faria et al., 2009, for a discussion of alternatives). 

3.6 Single vs multiple products 

Yet another element in the design of firm supply calculation methodology revolves around 

whether the capacity mechanism envisages a single or multiple products. Whilst standard 

practice is to address a single product, several may also be defined by: 

• factoring time criteria into the reliability product by calculating firm supply seasonally 

(winter/summer) or even monthly; 

• establishing different products for tackling short-term and long-term scarcity events, 

which would also entail establishing firm capacity and firm energy values or using 

flexible firm capacity in the calculations. 

Where two or more reliability products are assumed, the reason is most often to 

accommodate time-related issues. A number of power systems define seasonal (winter and 
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summer; ISO New England, 2016; NYISO, 2019) or even monthly (CPUC, 2017) firm 

supply values. In this approach adequacy assessment is broken down into sub-problems to 

perform firm supply calculations based on the reliability target. If monthly reliability 

products are defined, irrespective of whether they are purchased in separate auctions or 

jointly in the same auction, they rule out the existence of a single product with a single price. 

The inclusion of a number of products in the capacity mechanism and the concomitant 

calculation of several firm supply values could benefit resources that meet the respective 

requirements most fully. That is clearly illustrated by solar power units. Such resources 

have higher output in the summer. If they are de-rated monthly, their firm supply would be 

lower in the winter and higher in the summer months. Breaking firm supply up into shorter 

periods would translate into lower risk for resources with seasonal output, whereas using a 

yearly value would require them to provide the same firm supply for the full 12 months (in 

certain jurisdictions similar effects may be observed for wind and hydropower plants as well 

as in terms of demand response13). Be it said also that transferring the seasonality risk to 

market agents may favour large generation companies with resources using different 

technologies, for they would be able to offset the seasonal production of one resource with 

the output of others in their portfolio. 

Best practice 

The decision around how many products should be envisaged in the calculations calls for 

balancing a number of factors, including method simplicity and transparency and risk and 

uncertainty management. As optimal balance also depends on system characteristics and the 

resource mix, no one-size-fits-all recommendation can be advanced for this design element. 

4 CONCLUSION AND POLICY IMPLICATIONS 

A mainstay in market design, capacity mechanisms will constitute a vehicle for energy 

transition in the power sector. They purport to enhance security of supply during the 

paradigmatic change in the resource mix to be implemented in the decades to come by 

enabling all resources that can actually contribute to system adequacy to participate. Such 

 

13 According to SEPA (2019), PJM approved a summer-only DR proposal to accommodate demand response 

in connection with the cycling of air conditioning possibly ineligible for annual capacity payments. 
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participation must be based on modern de-rating methods that efficiently quantify the 

amount of firm supply that each resource can trade in the capacity market. 

This article discusses a theoretical framework for the adequacy problem and analyses the 

direction regulator tool development should take in the new circumstances. The most 

prominent result is a comprehensive proposal that addresses both adequacy assessment and 

the method for calculating firm supply. 

• As the reliability metric proposed (CVaR of unserved energy plus energy cleared and 

supplied beyond a price threshold) is based on market price, it is resilient to the rise in 

electricity demand elasticity expected in the near future. CVaR accommodates extreme 

weather events, whose frequency and intensity are likely to grow in the wake of climate 

change (dramatically illustrated by the 2021 Texas crisis). 

• Firm supply calculation methodology must be based on the same reliability metric as 

used to establish the adequacy target and ideally be the same for all resources. 

• Firm supply should be based on the marginal contribution of each resource or 

technology to ensure the efficacy of the signals sent by de-rating methodology, which 

should not attract technologies not expected to improve system adequacy. The 

mathematical substantiation of this recommendation is provided in the Annex. 

• Firm supply should be determined with a probabilistic model to simulate power system 

operation for a future resource mix in anticipation of the significant changes envisioned 

in the decades to come, which may also alter the nature of the scarcity conditions the 

system will need to handle. 

• Marginal contributions can be estimated from the energy generated by each resource or 

technology during the critical periods identified by the simulation model. 

In addition to this comprehensive proposal, the foregoing discussion may also prove useful 

for regulators presently introducing or revising a capacity mechanism or revising the 

associated de-rating methodology when analysing the pros and cons of the dichotomic 

alternatives addressed in section 3 (projections vs. historical data; marginal vs. mean 

contribution; per-resource vs. per-technology de-rating; annual vs. seasonal/monthly de-

rating). 
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ANNEX I 

This section demonstrates the link between the reliability metric (which is used to set the 
reliability target) and the methodology to measure the firm supply. This section also 
explains how this contribution should be remunerated.  

In order to do this, it is first formulated and solved the benchmark optimization problem 

which is a stylised version of the ideal central planner problem with an adequacy constraint. 

This adequacy constraint is expressed by means of a reliability metric (RM). Then it is 

formulated and solved the problem of the individual agents, where the ingredients of interest 

are their participation in the energy and in the capacity market. By comparing the optimality 

conditions of both problems we draw conclusions about what should be remunerated in a 

capacity mechanism and get to the formulation of the firm supply. 

The formulation of both problems will be based on the stylised models described in Pérez 
Arriaga and Meseguer (1997).  

Centralised problem 

This subsection uses a stylised version of the regulator’s model presented by Pérez-Arriaga 
and Meseguer (1997). In this problem, the objective is to maximise the net social benefit, 
NSB, related to the supply and consumption of electricity. This NSB is represented by the 
following expression: 

Max
Q K  NSB = U�Q

1
+Q
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+Q
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+…Q

n
� - C�Q

1
,Q

2
,Q

3
,…Q

n
� - I(K1,K2,K3,…Kn)  (1) 

Where: 

• Qi, represents the production of each generating plant, i= 1,2,3,4,…n, 

• Q1+Q2+Q3+… Qn represents the total production and therefore, the supplied demand. 

• U(Q1+Q2+Q3+… Qn) is the demand utility function, which depends on the power 

consumed by the demand. This demand utility function is assumed to be strictly 

increasing and concave. 

• C(Q1, Q2, Q3,… Qn) is the generation cost function, which aggregates all the generation 

units in the system, and also depends on the power consumed, or power produced, Qi, of 

each generation unit, i= 1,2,3,4,…n. In this case, the function is assumed to be strictly 

increasing and convex. 
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• I(K1, K2, K3,… Kn) is the investment cost function which depends on the amount of 

investment, Ki, of each generation unit (i). In this case, the function is assumed to be 

strictly increasing and convex.  

This stylised representation only considers two constraints: 

Q
i
 ≤ Ki   αi           (2) 

RM(K1,K2,K3,…Kn) ≥ RT    β        (3) 

The first constraint represents the upper limit of the power produced by each generation 
unit i, which corresponds to the installed capacity of that unit, Ki.  

On the other hand, the second constraint forces the reliability metric RM, which is assumed 
to be dependent only on the mix RM=RM(K1, K2, K3,… Kn), to fulfil a certain reliability 
target RT, which is set as a parameter. The RM is assumed to be strictly decreasing and 
convex. 

We have therefore discarded other operation constraints such as ramps, minimum power 
outputs etc., for simplicity. 

In order to obtain the first-order necessary conditions we formulate the Lagrangian 

function, 𝐿𝐿, and compute its first partial derivatives with respect to the decision variables. 
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1  + (RF(K1,K2,K3,…Kn) - RO)∙β   (4) 

If we compute the first partial derivative of this expression with respect to the decision 
variable Ki, which is the installed capacity of unit i, we obtain the following expression: 

∂L

∂Ki
=- ∂I(K1,K2,K3,…Kn)

∂Ki
- αi + ∂RF(K1,K2,K3,…Kn)

∂Ki
β=0      (5) 

The first two terms in equation 5 represent the classical equilibrium between the short term 

savings (reduction in the value of the objective function by αi) and the increase in long term 
costs (increase in the value of the objective function by the increase in investment costs) in 
the optimality point. The additional term of equation 5 will only be present if the constraint 
described by equation 3, regarding the adequacy of the system, is binding, which will alter 
the equilibrium described beforehand.  

Decentralised problem 

This subsection uses a stylised version of the generators viewpoint of the competitive 
market model presented by Pérez-Arriaga and Meseguer (1997). In contrast with the 
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centralised problem, the objective of each generation unit, i, is to maximise its own profit, 
Pi, which is represented by the following expression, where it is assumed that there is both 
a spot market and a capacity market: 

Max
Qi Ki

Pi = SMPQ,i∙Qi
 + CMPK,i∙Ki - Ci�Qi

� - Ii(Ki)      (6) 

Where: 

• SMPQ,i is the spot market price perceived by generation unit i, which when multiplied 

by Qi results in the spot market revenues. 

• CMPK,i is the capacity market price perceived by generation unit i, which when 

multiplied by Ki results in the capacity market revenues. 

• Ci(Qi) and Ii(Ki) are the generation cost function and the investment cost function of 

generation unit i, respectively, with the same characteristics as the centralised problem.  

The only constraint present in this problem is the following: 

Q
i
 ≤ Ki       αi           (7) 

This constraint is equivalent to the first constraint in the centralised problem. The second 
constraint found in the centralised problem is only present through the regulators 
perspective and is therefore only translated through the capacity market price in the 
objective function in this decentralised problem.  

In order to obtain the first-order necessary conditions we formulate now the Lagrangian 

function of this second problem, ℒ, and compute its first partial derivatives with respect to 

the decision variables. 

L(Q
i
,Ki,αi) = SMPQ,i∙Qi

 + CMPK,i∙Ki - Ci�Qi
� - Ii(Ki) + �Q

i
-Ki�∙αi   (8) 

When computing the first partial derivative of this expression with respect to the decision 
variable Ki we obtain the following optimality condition: 

∂L

∂Ki
 = CMPK,i -

∂I(K1,K2,K3,…Kn)
 ∂Ki

- αi = 0        (9) 

Equation 9 is very similar to equation 5, without the global constraint described by equation 
3, which is only present in the centralised problem, but with the additional term CMPK,i.  

Unification of both problems 

Comparing equation 9 to equation 5 we obtain the following expression:  
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CMPK,i = ∂RM(K1,K2,K3,…Kn)

∂Ki
∙β         (10) 

Which leads to the following remuneration in the capacity market: 

CMPK,i∙Ki = ∂RM(K1,K2,K3,…Kn)

∂Ki
∙Ki∙β        (11) 

This allows us to draw several conclusions: 

1. The firm supply depends on the marginal contribution to the reliability metric 
RM(K1, K2, K3,… Kn). 

2. CMPK,i, expressed in equation 10, represents the price of 1MW of unit i. However, 

β is the price for the firm supply, which is a value that could be obtained through 
competitive means, such as a capacity auction.  

3. The installed capacity of generation unit i, Ki, multiplied by the variation of RM with 
respect to it, in the optimality point, represents the firm supply of generation 
technology i.  
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